VSCode SetUp Extensions list
Python
Pylance
Ruff
Python Debugger
python-snippets
(extension_id:cstrap.python-snippets)Formatter & Linter 后文提到的 Ruff 不仅可以在命令行中使用,还可以集成到 VS Code 中,以便在保存文件时自动格式化和检查代码。或者也可以用微软维护的 Black Formatter 的插件
VS Code 配置示例: 在 .vscode/settings.json
中添加以下配置,使得代码在保存时自动格式化和修复
" editor.formatOnPaste " : true ,
" editor.formatOnSave " : true ,
" editor.formatOnType " : true ,
" [python] " : {
" editor.codeActionsOnSave " : {
" source.fixAll.ruff " : " always " , // fix all
" source.organizeImports.ruff " : " always " , // sort imports
},
" editor.defaultFormatter " : " charliermarsh.ruff "
} ,
LSP 推荐 Pylance 作为 LSP,个人开发过程中的配置 👇
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 " python.languageServer " : " Pylance " ,
" python.analysis.cacheLSPData " : true ,
" python.analysis.typeEvaluation.enableReachabilityAnalysis " : true ,
// inlay hints releated
" editor.inlayHints.enabled " : " offUnlessPressed " ,
" python.analysis.inlayHints.callArgumentNames " : " all " ,
" python.analysis.inlayHints.functionReturnTypes " : true ,
" python.analysis.inlayHints.pytestParameters " : true ,
" python.analysis.inlayHints.variableTypes " : true ,
" python.analysis.typeEvaluation.deprecateTypingAliases " : true ,
" python.analysis.autoFormatStrings " : true ,
" python.analysis.autoImportCompletions " : true ,
" python.analysis.completeFunctionParens " : true ,
// 类型检查设置为 strict,大型项目中,推荐使用,保证软件Robustness
" python.analysis.typeCheckingMode " : " strict " ,
// 启用同步服务器,暂时不稳定(2024年10月),默认是关闭的,不推荐使用
" python.analysis.enableSyncServer " : false ,
" python.analysis.typeEvaluation.enableExperimentalFeatures " : true ,
" python.terminal.activateEnvInCurrentTerminal " : true ,
" python.terminal.shellIntegration.enabled " : true ,
" python.analysis.fixAll " : [
" source.unusedImports " ,
" source.convertImportFormat "
] ,
" python.analysis.nodeExecutable " : " /usr/sbin/node " ,
Package & Project Management python 管理环境的工具有点过多了 😵💫
conda create --name <venv_name>
python -m venv <venv_name>
poetry
… 这里选择了UV An extremely fast Python package and project manager, written in Rust.
使用过程中就感觉到快 😎👍
Installation
# On macOS and Linux.
$ curl -LsSf https://astral.sh/uv/install.sh | sh
# On Windows.
$ powershell -ExecutionPolicy ByPass -c " irm https://astral.sh/uv/install.ps1 | iex "
# With pip.
$ pip install uv
使用方法可以参见 uv 官方文档 下面是个人比较常用的命令
Virtual Environment 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 # 创建虚拟环境
$ uv venv myenv
Using CPython 3.12 .7 interpreter at: /usr/sbin/python
Creating virtual environment at: myenv
# 激活虚拟环境
$ overlay use myenv/bin/activate.nu
# 退出虚拟环境
$ deactivate
# 切换项目使用的 Python 版本
$ uv python pin 3.12
Updated ` .python-version ` from ` 3.13 ` → ` 3.12 `
$ uv sync
Using CPython 3.12 .7 interpreter at: /usr/sbin/python
Removed virtual environment at: .venv
Creating virtual environment at: .venv
Resolved 44 packages in 1 ms
Audited in 0.00 ms
# 列出可用的Python版本,包括已下载和可供下载的
$ uv python list
# 下载指定版本的python
$ uv python install 3.12
Searching for Python versions matching: Python 3.13
Installed Python 3.13 .0 in 7.77 s
+ cpython-3.13.0-linux-x86_64-gnu
Dependency uv 也实现了部分 pip 的功能,使用 uv pip install -r requirements.txt 或 uv pip install -r pyproject.toml --extra dev
导出依赖 将 pyproject.toml 文件导出为 requirements.txt 格式:uv pip compile ./pyproject.toml -o ./requirements.txt
# 添加依赖
uv add ruff
uv pip install ruff
# 更新依赖
uv add ruff== 0.7 .2
# 卸载依赖
uv remove ruff
Ruff An extremely fast Python linter and code formatter, written in Rust.
Linter : A Linter is a tool that analyzes your code and reports on potential issues.Formatter : A Formatter is a tool that automatically formats your code.ruff 可以在 pyproject.toml
中配置,也可以在 .ruff.toml
中配置 具体参数可以参考 Ruff Configuration
此外,在 Git 中可以设置 Pre-push hook,在每次代码推送前自动运行 Ruff 检查。以下是一个示例脚本,将其保存为 ./.git/hooks/pre-push
。下面代码比较暴力,直接检查当前目录下 Python File 的格式是否正确,可以自己改一下,只检查已 commit 的代码
cat ./.git/hooks/pre-push
#!/bin/sh
# 运行 ruff 检查
uv run ruff check .
# 检查 ruff 的退出状态
if [ $? -ne 0 ]; then
echo " Ruff check failed. Please fix the issues before push. "
exit 1
fi
echo " All checks passed. "
MISC __pycache__
在 Python 开发中,项目会生成一些临时文件和缓存文件,比如 __pycache__
目录。不需要时,可以用下面的命令可以递归删除这些缓存文件夹
python3 -Bc "import pathlib; [p.rmdir() for p in pathlib.Path('.').rglob('__pycache__')]"
python3 -Bc "import pathlib; [p.rmdir() for p in pathlib.Path('.').rglob('.pytest_cache')]"
find . -type d -name __pycache__ -exec rm -r {} \+
find ./ -type f -name '*.pyc' -delete -print && find ./ -type d -name "pycache" -delete -print
StackOverFlow: Python3 project remove __pycache__
folders and .pyc
files
json import json
res = json . dumps (
{
" networks " : { " lan1 " : " 192.168.1.0/24 " , " lan2 " : " 192.168.2.0/24 " },
" connections " : {
" conn1 " : " Connection(src=192.168.1.1/24, dst=192.168.1.2/24, src_port=80, dst_port=8080, transport_proto=TCP) " ,
" conn2 " : " Connection(src=192.168.1.1/24, dst=192.168.2.1/24, src_port=99, dst_port=8080, transport_proto=TCP) " ,
},
}
)
print ( res )
print ( json . dumps ( res )) # 对已经转换过的json再次转换,将对特殊字符进行转义
$ python ./temp.py
{ " networks " : { " lan1 " : " 192.168.1.0/24 " , " lan2 " : " 192.168.2.0/24 " }, " connections " : { " conn1 " : " Connection(src=192.168.1.1/24, dst=192.168.1.2/24, src_port=80, dst_port=8080, transport_proto=TCP) " , " conn2 " : " Connection(src=192.168.1.1/24, dst=192.168.2.1/24, src_port=99, dst_port=8080, transport_proto=TCP) " }}
" { \" networks \" : { \" lan1 \" : \" 192.168.1.0/24 \" , \" lan2 \" : \" 192.168.2.0/24 \" }, \" connections \" : { \" conn1 \" : \" Connection(src=192.168.1.1/24, dst=192.168.1.2/24, src_port=80, dst_port=8080, transport_proto=TCP) \" , \" conn2 \" : \" Connection(src=192.168.1.1/24, dst=192.168.2.1/24, src_port=99, dst_port=8080, transport_proto=TCP) \" }} "
pyproject.toml 为了规范化 Python 项目的构建系统,Python 社区提出了 PEP 518,提案提出使用pyproject.toml
方法指定 Python 项目的构建系统及其依赖关系,避免多个不同工具之间的配置文件不一致问题。详见Writing your pyproject.toml
The [build-system]
table is strongly recommended. It allows you to declare which build backend you use and which other dependencies are needed to build your project. The [project]
table is the format that most build backends use to specify your project’s basic metadata, such as the dependencies, your name, etc. The [tool]
table has tool-specific subtables, e.g., [tool.hatch]
, [tool.black]
, [tool.mypy]
. We only touch upon this table here because its contents are defined by each tool. Consult the particular tool’s documentation to know what it can contain. [build-system]
暂不涉及,其主要负责 python 打包和发布相关的配置[project]
主要负责项目元数据,如项目名称、版本、依赖等[tool]
可以集中配置各种工具,如 ruff
、black
、pytest
等,统一在pyproject.toml
里,保持根目录的整洁
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 [ project ]
name = " vnet "
version = " 0.1.0 "
description = " virtual network "
readme = " README.md "
requires-python = " >=3.10 "
dependencies = []
[ project . optional-dependencies ]
doc = [ " mkdocs-material " , " mkdocs-mermaid2-plugin " ]
dev = [ " pytest>=8.3.3 " , " ruff==0.7.2 " , " pytest-cov " ]
[ tool . ruff ]
line-length = 100
target-version = " py312 "
respect-gitignore = true
indent-width = 4
[ tool . ruff . format ]
quote-style = " double "
indent-style = " tab "
docstring-code-format = true
[ tool . ruff . lint ]
ignore = [ " E402 " ]
[ tool . pytest . ini_options ]
# 设置syspath目录
pythonpath = " /home/efterklang/workspace/vnet "
# 添加命令行选项
addopts = " -vs "
# 指定测试路径
testpaths = [ " ./test " ]
# 指定测试文件和命名规则
python_files = [ " test_*.py " ]
python_classes = " Test* "
python_functions = " test_* "
# 命令行日志输出设置
log_cli = true
log_cli_format = " %(asctime)s [%(levelname)s] %(message)s "
log_cli_date_format = " %m.%d %H:%M:%S "
@dataclass 在 Python 中,定义一个类常常需要编写重复的代码,如构造函数(__init__
)、比较函数(__eq__
)、字符串表示(__repr__
)等。为了解决这一问题,Python 3.7 引入了 @dataclass
装饰器,帮助开发者自动生成这些函数。@dataclass
的出现简化了类的定义,尤其是那些主要用于存储数据的类,减少样板代码(boilerplate),使得代码更加简洁和易读。
Java 中与之类似的是 record
,JDK14 引入的。public record Person(String name, int age) {}
Lombok
提供了@Data
注解,也可以自动生成 getter、setter、toString 等方法
官方文档 👉dataclasses — Data Classes
frozen=True
,可以让类的实例变为不可变对象,类似于 namedtuple
。@ dataclass ( frozen =True)
class Point :
x : int
y : int
p = Point ( 10 , 20 )
# p.x = 30 # 这会抛出错误,因为 Point 是不可变的
通过 field()
函数,可以为类中的字段设置元数据,如是否初始化、默认工厂等。 from dataclasses import dataclass , field
@ dataclass
class User :
username : str
password : str = field ( repr =False) # 在 __repr__ 中隐藏该字段
user = User ( username = " alice " , password = " secret " )
print ( user ) # 输出:User(username='alice')
asdict
和 astuple
:可以将数据类转换为字典或元组。有时候需要将数据类转换为其他格式,比如 JSON;序列化时可以使用asdict
减少编码工作,此外也可以选择Pydantic
,Marshmallow
等库